ACM ICPC 2014-2015
 Northeastern European Regional Contest Problems Review

Roman Elizarov

December 7, 2014

Problem A. Alter Board

- The minimal answer to this problem is $\lfloor n / 2\rfloor+\lfloor m / 2\rfloor$
- The solution is to make inversions on each even row and each even column
- To prove that the answer is minimal consider the first column with its n cells that form $n-1$ neighbouring pairs
- to turn all cells of the first column in the same color inversions must span the first column
- each spanning inversion makes at most two neighbouring pairs of the same color
- so the minimum of $\lceil(n-1) / 2\rceil=\lfloor n / 2\rfloor$ inversions are needed
- Then consider the top row in the same way

Problem B. Burrito King

- Consider the problem as a sum of vectors in (a, b) coordinates
- The resulting vector may not go above $b=B$ line and must extend on a axis as far as possible
- It is optimal to greedily add (a_{i}, b_{i}) ingredient vectors starting from the ones that have the least angle to 0a line (or maximal $\left.a_{i} / b_{i}\right)$, until $b=B$ line is crossed
- Be careful about corner cases with $a_{i}=0$ and/or $b_{i}=0$

Problem C. Cactus Generator

- This is a straightforward problem for parsing and OO design
- Define class for graph with a method to generate graph given index of the first and the vertices
- Define class for various range types
- Parse and construct classes tree
- Build the resulting graph
- Connect arbitrary pairs of vertices of odd degree in the resulting graph using temporary edges
- Use classical algorithm for Eulerian path
- Remove temporary edges to get the minimal number of covering paths

Problem D. Damage Assessment

- Numerically integrate the square section by $d x$
- The square of the cut at a given x coordinate is a simple planar geometry problem
- Take care about leftmost point with infinite derivative
- however, the required precision does not make this a big problem
- the square section at this point is small

Problem E. Epic Win!

- There is a simple solution with up to n^{2} states
- Build your FSM as n copies of a winning FSM with n states
- Each state of a winning FSM corresponds to a state in the opponent FSM
- Each move of a winning FSM is a winning move for the corresponding opponent's move
- Next state in a winning FSM corresponds to the opponent move and opponent's next state
- Leave other transitions undefined
- The first copy of a winning FMS starts in its first state and wins an opponent that stats in it first state by construction
- Model the behaviour of the opponent and your FSM for all opponent start states from the states 2 to n
- When a yet undefined transition is reached, then insert a transition to a fresh copy of a winning FSM into the state corresponding to the opponent's, thus ensuring win in this copy
- Stop modelling when loop is detected
- Loop is inside one copy of a winning FSM and is always winning by construction

Problem F. Filter

- Nothing fancy here
- Just implement what the problem statement asks for in a straightforward way
- The hardest part seems to be reading and understanding the problem statement

Problem G. Gomoku

- The first player's strategy has pretty strict priorities in the moves it makes and it can be exploited
- Make the first move into the free space of the board

Problem G. Gomoku cont'd

- The opponent must play around the center and you form a diagonal

Problem G. Gomoku cont'd

- The opponent forms three in a row and you make defensive moves

Problem G. Gomoku cont'd

- The opponent closes two in a row at one side, and you extend in on the other

Problem G. Gomoku cont'd

- The opponent closes the three on the other side, but you continue offence at building a winning position

Problem G. Gomoku cont'd

- Force the opponent into a sequence of defensive moves
- Then close four in a row with a hole that is formed by the opponent defence

Problem G. Gomoku cont'd

- The opponent closes your open three, you extend it, forming a winning fork

Problem G. Gomoku win

- You win
- It is very hard to win otherwise, because playing first in gomoku gives an enormous advantage even to such a simple strategy

Problem H. Hidden Maze

- Make a rooted tree
- Lets compute how many times each edge is a median
- Start with an edge with lowest c_{i} and work in increasing order of c_{i}
- For each edge c_{i} look at its lowest vertex j in the tree
- For each path from j down into the subtree, let the balance be the number of edges with c higher than current c_{i} minus the number of edges with c lower than current c_{i}
- For each vertex j maintain an array b_{j}
- with $2 d_{j}+1$ elements $b_{j}[\delta]$ for $|\delta| \leq d_{i}$, where d_{j} is a depth of subtree rooted at j
- each item $b_{j}[\delta]$ contains a number of paths down from j with a balance δ
- including an empty path with balance zero

Problem H. Hidden Maze cont'd

- Initial $b_{j}[\delta]$ is the number of paths of a length δ down from vertex j
- It is easy to compute recursively in $O\left(\sum d_{j}\right)$ while building rooted tree
- From the current vertex j walk up the tree
- For all vertices k up tree from j compute the number of paths with balance zero going from down up to j, then up to k then down to other subtree of k
- paths with zero balance are the ones where c_{i} is the median

$$
\sum_{\delta=-d_{j} \ldots d_{j}} b_{j}[\delta] \cdot\left(b_{k}\left[-\delta-\Gamma_{k, j \uparrow}\right]-b_{k \downarrow}\left[\delta-\Gamma_{k, j}-\Gamma_{k, k \downarrow}\right]\right)
$$

- where $k \downarrow$ is the next vertex from k down on the path to j and $j \uparrow$ is the next vertex up from j
- and $\Gamma_{k, j}$ is the sum of balances on a path from k to j
- The total complexity is $O\left(\sum d_{j} \cdot h_{j}\right)$, where h_{j} is the height of vertex j - length of path from root

Problem H. Hidden Maze cont'd

- Update $b_{j}[\delta]$ when done with an edge c_{i}
- For all vertices k up tree from j update the b_{k} arrow taking into account that c_{i} balance changes from -1 to 1

$$
b_{k}[\delta] \leftarrow b_{k}[\delta]+b_{j}\left[\delta-\Gamma_{k, j \uparrow}+1\right]-b_{j}\left[\delta-\Gamma_{k, j \uparrow}-1\right]
$$

- The total complexity is also $O\left(\sum d_{j} \cdot h_{j}\right)$
- However, for the graph randomly generated as described in the problem statement $\sum\left(d_{j} \cdot h_{j}\right)=O(n \sqrt{n})$

Problem I. Improvements

- Consider transposition a_{j} - the number of ship at coordinate j, that is reverse to what is given in the input
- It is easy to prove that the chain of ships that remain on their initial position corresponds to a subsequence of a_{j} with a special property:
- it is an increasing sequence of numbers a_{j} followed by decreasing sequence of numbers a_{j}
- Increasing/decreasing subsequence is a well-known problem with $O(n \log n)$ solution using dynamic programming

Problem J. Jokewithpermutation

- This problem is solved with exhaustive search
- for each number try all positions that it can occupy
- start search with numbers that can occupy fewest number of possible positions

Problem K. Knockout Racing

- Nothing fancy here
- Just implement what the problem statement asks for in a straightforward way
- This is the easiest problem in the contest

