
ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

Problems summary

Recap: 299 teams, 13 problems, 5 hours. This analysis assumes knowledge of the problem statements
(published separately on http://neerc.ifmo.ru/ web site).

Summary table lists problem name and stats:

• author — author of the original idea
• developer — developer of the problem statement and tests
• acc — the number of teams that had solved the problem (gray bar denotes a fraction of the teams

that solved the problem)
• runs — the number of total attempts
• succ — overall successful attempts rate (percent of accepted submissions to total, also shown as a

bar)

problem name author developer acc/runs succ

Alice the Fan Oleg Hristenko Niyaz Nigmatullin 81 /466 17%

Bimatching Pavel Irzhavski Pavel Irzhavski 0 /53 0%

Cactus Search Borys Minaiev Borys Minaiev 26 /121 21%

Distance Sum Gennady Korotkevich Gennady Korotkevich 0 /19 0%

Easy Chess Mikhail Dvorkin Mikhail Dvorkin 249 /565 44%

Fractions Dmitry Yakutov Dmitry Yakutov 148 /677 21%

Guest Student Mikhail Mirzayanov Mikhail Mirzayanov 225 /589 38%

Harder Satisfiability Andrey Stankevich Artem Vasilyev 1 /11 9%
Interval-Free
Permutations

Andrey Stankevich Pavel Kunyavsky 2 /5 40%

JS Minification Roman Elizarov Roman Elizarov 5 /50 10%

King Kog’s Reception Vitaliy Aksenov Vitaliy Aksenov 20 /65 30%

Lazyland Pavel Mavrin Pavel Mavrin 247 /490 50%

Minegraphed Mikhail Dvorkin Mikhail Dvorkin 66 /278 23%

Problem A. Alice the Fan
Author: Oleg Hristenko
Statement and tests: Niyaz Nigmatullin

Total
time

0h 1h 2h 3h 4h 5h

81

385

Java Kotlin C++ Python Total

Accepted 1 0 80 0 81
Rejected 2 0 377 6 385

Total 3 0 457 6 466

solution team att time size lang

Fastest ITMO 4 3 42 2819 C++
Shortest BelarusianSU 5 2 157 1907 C++
Max atts. MISiS 4 10 294 5557 C++

Page 1 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

One of the solutions is to use dynamic programming.

Let fs,t,a,b be whether it is possible to play s+ t sets, such that current match score is s:t and the total
number of points scored is a:b.

To calculate fs,t,a,b we can iterate over all possible set scores x:y and check if it’s possible fs−1,t,a−x,b−y,
if x > y, or fs,t−1,a−x,b−y, if x < y.

As the number of matches is large, it’s required to pre-calculate f once. For each given match it’s possible
to iterate over all match scores s:t in the decreasing order s− t, and find first match score that fs,t,a,b = 1.
And then find the set scores using any known dynamic programming answer restoring technique. For
example, one of the ways to do that is to store the last set score for each {s, t, a, b}.

Problem B. Bimatching

Author: Pavel Irzhavski
Statement and tests: Pavel Irzhavski

Total
time

0h 1h 2h 3h 4h 5h

53

Java Kotlin C++ Python Total

Accepted 0 0 0 0 0
Rejected 0 0 53 0 53

Total 0 0 53 0 53

Consider the following graph G. The graph G has a vertex vℓ corresponding to the lady ℓ for ℓ = 1, 2, . . . ,m
and two vertices uc and u′c corresponding to the cavalier c for c = 1, 2, . . . , n. The vertex vℓ is adjacent to
both vertices uc and u′c if and only if the lady ℓ can dance with the cavalier c. The vertices uc and u′c are
adjacent for the each cavalier c = 1, 2, . . . , n.

Lemma. The cardinality of the maximal matching in graph G is equal to n+ k, where k is equal to the
maximal bimatching in the original graph.

Proof. If the maximal bimatching in the original graph is equal to k, we can construct the matching of
size n+ k in graph G following way: for each bimatching (uc, vℓ1 , vℓ2) take edges (uc, vℓ1) and (u′c, vℓ2) to
a matching. For each unmatched by bimatchings vertex uc take edge (uc, u

′
c) to a matching. These n+ k

edges form a correct matching in G.

If we have a matching of size n+ k (we always can make a matching with n edges just by edges between
(uc, u

′
c), then we can make a bimatching in original graph of size k. We have 2n vertices, so there are at

least k pairs uc, u
′
c, covered by a matching, such that the edge (uc, u

′
c) is not in matching. We can make

a bimatching from such edges, and get exactly correct k-bimatching in the original graph.

So, we reduced the original problem to finding a maximal matching in a general graph. It can be done by
a lot of different algorithms, running between O(n5/2) and O(n4), but any of them should get accepted.

Problem C. Cactus Search
Author: Borys Minaiev
Statement and tests: Borys Minaiev

Page 2 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

Total
time

0h 1h 2h 3h 4h 5h

26

95

Java Kotlin C++ Python Total

Accepted 0 0 26 0 26
Rejected 0 0 95 0 95

Total 0 0 121 0 121

solution team att time size lang

Fastest ITMO 2 2 127 2417 C++
Shortest BelarusianSU 5 1 269 1230 C++
Max atts. KBTU 1 8 248 2372 C++

Let’s maintain a set of vertices which could be picked by Chloe. If the size of the set becomes at least two
times smaller after each query than before it, then after 9 queries the set will contain at most one vertex.

It is always possible to choose a vertex to query in such a way that the set of candidates decreases two
times. For example, we can choose a vertex with a minimal sum of distances to the candidates set.

It could be proved by contradiction that such a vertex is good. If we asked a vertex u and Chloe responded
with a vertex w and more than half of paths from u to candidates goes through w, it means that the sum
of distances from w to candidates if less than similar sum from u. So initial assumption (u has smallest
sum of distances) is incorrect.

The complexity of the algorithm is O(n2), but we need to find a hidden vertex n times, so the overall
complexity is O(n3).

Problem D. Distance Sum
Author: Gennady Korotkevich
Statement and tests: Gennady Korotkevich

Total
time

0h 1h 2h 3h 4h 5h

19

Java Kotlin C++ Python Total

Accepted 0 0 0 0 0
Rejected 2 0 8 9 19

Total 2 0 8 9 19

Let’s solve a generalized version of the problem: each vertex i has weight wi, we need to find
n−1∑

u=1

n∑

v=u+1

wuwvd(u, v). The original problem corresponds to ∀i : wi = 1.

Consider any vertex x of degree 1, and let its only neighbor be y. Clearly, every shortest path from x

to another vertex starts with edge x ∼ y. Thus, the contribution of this edge to the answer is equal to

Page 3 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

wx ·
∑

i 6=x

wi. Let’s increase the answer by this value, increase wy by wx, and remove vertex x together with

edge x ∼ y from the graph. This way we reduce the size of the graph without changing the answer, the
graph stays connected, and m ≤ n+ 42 still holds.

Once we eventually get rid of vertices of degree 1 altogether, there might be just one vertex of degree 0
left if the original graph was a tree — in this case we’re done. Otherwise every vertex has degree at least 2.

Note that
∑

i
deg(i) = 2m ≤ 2n + 84. Thus, there are at most 84 vertices of degree more than 2. We’ll

call these vertices special. If there are no special vertices, the graph is just a cycle — then we’ll pick any
vertex on the cycle and call it special. Now the graph consists of special vertices connected by paths of
vertices of degree 2.

Let’s run breadth-first search from every special vertex to find the distances to all other vertices.

For every vertex v, let s(v) =
∑

u 6=v

wud(u, v), then the answer is 1

2

∑

v
s(v).

Finally, let’s calculate s(v). For each special vertex u, the distance from v to u is known from BFS.
Consider a non-special vertex u lying on a path between special vertices u1 and u2; let this path be
u1, x1, x2, . . . , xk, u2.

If v doesn’t lie on the same path, the shortest path from v to u visits either u1 or u2. To be exact,
for some t ∈ [0; k], the shortest path from v to x1, x2, . . . xt visits u1, and the shortest path from v

to xt+1, xt+2, . . . , xk visits u2. The value of t can be calculated based on d(v, u1), d(v, u2), and k. The
part of s(v) dependent on x1, x2, . . . , xk can be calculated based on prefix sums of wx1

, wx2
, . . . , wxk

and
1 · wx1

, 2 · wx2
, . . . , k · wxk

.

Case v = xi can be handled in a similar fashion.

Problem E. Easy Chess

Author: Mikhail Dvorkin
Statement and tests: Mikhail Dvorkin

Total
time

0h 1h 2h 3h 4h 5h

249

316

Java Kotlin C++ Python Total

Accepted 8 1 219 21 249
Rejected 67 1 198 50 316

Total 75 2 417 71 565

solution team att time size lang

Fastest MIPT 1 1 17 2237 C++
Shortest Ataturk-Alatoo 2 2 167 417 Python
Max atts. IrkutskNRTU 1 54 293 3542 Java

One possible short-to-code solution is to move from left to right, visiting 0 or more cells in each column.
The minimal amount of visited cells per column would be [1, 0, 0, 0, 0, 0, 0, 2]. If n (the desired number
of moves) is greater than 2, increase these numbers by 1 arbitrarily n− 2 times, but never exceeding 8.

Now, for each column, let m be the desired amount of visited cells in it. If m = 0, just skip the column.
Otherwise, enter this column in the row that you know from the previous columns (or initialize at row 1

Page 4 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

in column a), and then visit m− 1 other arbitrary cells in this column, and remember in which row you
left it.

The choice of visited cells is indeed arbitrary, with two exceptions: forbid yourself to leave columns a–g
in row 8 (because in that case you wouldn’t be able to process column h correctly), and make sure you
finish in row 8 in column h.

Problem F. Fractions
Author: Dmitry Yakutov
Statement and tests: Dmitry Yakutov

Total
time

0h 1h 2h 3h 4h 5h

148

529

Java Kotlin C++ Python Total

Accepted 0 0 143 5 148
Rejected 4 2 512 11 529

Total 4 2 655 16 677

solution team att time size lang

Fastest SPbSU 3 1 14 1224 C++
Shortest CrimeanFU 1 1 123 381 Python
Max atts. RybinskSATU 10 298 2515 C++

Consider the following cases:

• n = pm where p is a prime number. It means that for i = 1 . . . k bi is less than n and bi divides n,
so bi divides pm−1 = n

p . Therefore sum of all fractions ai
bi

has a denominator which divides n
p , so the

sum cannot be equal to 1− 1

n .

• n is not power of a prime number. It means that n can be expressed as product of two numbers
x > 1 and y > 1 such that gcd(x, y) = 1. For example, if n = pm1

1
· . . . · pmt

t then x can be pm1

1
and

y can be pm2

2
· . . . · pmt

t . Without loss of generality we can say that x ≤ y, otherwise we can swap
values of x and y. Let’s find the sequence of fractions of the following form: k = 2, a1

b1
= c

x , a2
b2

= d
y .

We need to solve an equation: c
x + d

y = 1− 1

n or c · y + d · x = n− 1.

Lets iterate over all values of c from 1 and x − 1. Value of (c · y) mod x is iterating from 1 to
x − 1 in some order because c · y is not divisible by x and values of c · y differ if values of c differ
because x and y are coprime. Therefore there exists c such that c · y+1 is divisible by x. Let’s take
this value of c and let’s say d = n−1−c·y

x . n is divisible by x, so n − 1 − c · y is divisible by x. Also

1+ c · y ≤ 1+ (x− 1) · y = n− (y− 1) < n, so d > 0. It means that pair of fractions ( cx ,
d
y ) is correct

sequence of fractions.

It is needed to factorize number n to find the answer. It can be done using O(
√
n) time. After it is needed

to iterate over values of c. There are x − 1 possible values and x =
√
x · x ≤ √

x · y =
√
n, so this part

can be done using O(
√
n) time. The total complexity of solution is O(

√
n).

Page 5 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

Problem G. Guest Student
Author: Mikhail Mirzayanov
Statement and tests: Mikhail Mirzayanov

Total
time

0h 1h 2h 3h 4h 5h

225

364

Java Kotlin C++ Python Total

Accepted 4 1 208 12 225
Rejected 25 0 324 15 364

Total 29 1 532 27 589

solution team att time size lang

Fastest IvanovoSPowU 1 14 810 C++
Shortest YerevanSU 2 2 64 443 Python
Max atts. IrkutskSU 3 9 242 1456 C++

Let’s iterate over all possible days of a week to start studying. We will solve problem independently for
each starting day of a week and choose the best result.

To solve a problem for fixed starting day let’s find n = max(0, k / sum - 1) — lower bound for the
number of whole weeks (where sum is a1 + a2 + · · · + a7). After it you can iterate day by day to study
exactly k days.

Problem H. Harder Satisfiability

Author: Andrey Stankevich
Statement and tests: Artem Vasilyev

Total
time

0h 1h 2h 3h 4h 5h

1
10

Java Kotlin C++ Python Total

Accepted 0 0 1 0 1
Rejected 0 0 10 0 10

Total 0 0 11 0 11

solution team att time size lang

The only MSU 3 3 210 2318 C++

Let’s convert given OR clauses into an implication digraph, the same way as in classic 2-SAT solution.
Build a condensation of that graph. We’ll call a variable universal if the corresponding quantifier is ∀,
and an existential if the corresponding quantifier is ∃. Now a fully quantified formula is false if and only
if at least one of the three following properties is true:

Page 6 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

1. A variable xi is in the same strongly connected component (SCC) as its negation xi

2. An existential variable xi is in the same SCC as a universal variable xj such that xi precedes xj (so,
i < j).

3. A universal vertex (corresponding to some variable xi or its negation) is reachable from another
universal vertex.

It’s easy to see that if one of these three conditions is true, then the formula is false. Otherwise, there is
an algorithm that marks every SCC as false, true or any (for those components that contain a universal
vertex). Process SCCs in order of reverse topological order. If the current component S wasn’t already
marked, mark it as any if it contains a universal vertex. Otherwise, if S has a false or any successor, mark
it as false. In the other case, mark it as true. Mark the negative component, corresponding to negations
of all vertices in S accordingly. If this marking does not yield a solution, then it’s possible to find either
a proof of one of three statements above.

Now we have to check if any of these three conditions is true. To check the first condition iterate over all
variables and check if xi and xi are in different SCCs. To check the second condition, again, iterate over
all variables, mark a component whenever you encounter an existential variable, and check whenever you
see a universal variable. To check the third condition, iterate over all components in reverse topological
order and keep track of components, from which you can reach a universal vertex. If there is a component
with at least two universal vertices, or a component with a universal vertex, from which another universal
vertex is reachable, then the formula is false.

The implication graph can be build and compressed in O(n+m) time. Checking all the required conditions
can be also implemented in O(n+m) time, so in the end we have a linear time algorithm for this problem.

Problem I. Interval-Free Permutations
Author: Andrey Stankevich, Pavel Kunyavskiy
Statement and tests: Pavel Kunyavsky

Total
time

0h 1h 2h 3h 4h 5h

2

3

Java Kotlin C++ Python Total

Accepted 0 0 2 0 2
Rejected 0 0 3 0 3

Total 0 0 5 0 5

solution team att time size lang

Fastest MIPT 6 2 216 2063 C++
Shortest MSU 3 2 279 1468 C++
Max atts. MSU 3 2 279 1468 C++

We will use dynamics programming. Good permutations, are all except bad. To count bad permutations
we will first need to understand some of their structure.

Let’s call interval maximal if it isn’t inside any bigger interval, except full permutation. It’s easy to see,
that if two intervals intersects, their union is interval too. So, if two maximal intervals intersects, they

Page 7 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

cover full permutation. This yields two possibilities: bad permutation is either concatenation of 3 or more
maximal intervals, or two maximal intervals that cover all permutation. We will count this two cases
separately, as each of them excludes other.

Easier case is for two intervals. We have two symmetric cases — when first element is bigger than last,
and visa versa. Number of permutation for both cases is same, let’s consider first of them. This requires
that none of prefix of left permutation is prefix of integers. Number of such permutations can be found
be dynamics programming, using same idea — good permutations are all except bad, bad is good prefix
+ anything else. And right permutation can be anything.

For the other case, we can see, that nothing depends on permutation inside each interval, so they can
be any permutations. The only restriction we have — none of our intervals can form bigger interval. But
this means, that permutation of relative order of intervals is interval-free. As their number is less than n

(otherwise all of them have length 1), we already know number of such permutations. And only thing to
do, is multiply them by number of ways to choose given number of permutations with given total length,
which can be easily precomputed in cubic time.

To summarise, we need to count three following recurrences:

• Number of permutation, none of prefixes of which is permutation.

In = n!−
n−1∑

k=1

Ik · (n− k)!

• Number of ways to choose k permutations of total length n.

Bn,k =
n∑

t=1

Bn−t,k−1 · t!

• The answer

An = n!− 2 ·
n−1∑

k=1

Ik · (n − k)!−
n−1∑

k=3

Bn,k ·Ak

Problem J. JS Minification
Author: Roman Elizarov
Statement and tests: Roman Elizarov

Total
time

0h 1h 2h 3h 4h 5h

5
45

Java Kotlin C++ Python Total

Accepted 0 0 5 0 5
Rejected 0 0 44 1 45

Total 0 0 49 1 50

solution team att time size lang

Fastest MIPT 6 2 203 7724 C++
Shortest MSU 3 1 242 4493 C++
Max atts. ITMO 4 5 261 6512 C++

Page 8 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

The first part of the problem is to write code that parses the input. Process the input source line by
line. On each like you should repeatedly skip space and parse tokens. The start of a potential word or
a number is determined by its first character according to the problem statement, parsing the longest
possible word or number while the corresponding characters are encountered. However, there could a case
when there is a longer reserved token that had started at the same position. In the limits of this problem
all n possible reserved tokens can be exhaustively checked at the current parsing position. The longest
matching reserved token or the longest word/number token shall be chosen. Thus, the whole input is
transformed into a sequence of tokens.

The second part of the problem is word renaming. Maintain a map from source word to output word
and use renaming from this map when a source word is encountered for a second time. To handle a new
source word you need a procedure to generate a target word list. This can be done by keeping the value of
the last used target word and using a procedure to generate the next target word from the previous one,
which is basically like incrementing an integer in base 26. You will need to check each candidate target
word against a list of reserved tokens, and repeat looking at the next target word until it is not in the list
of reserved tokens.

The third part of the problem is writing the resulting sequence of tokens (after rename) to the output
while inserting the minimum number of spaces. This can be done greedily, because a space is a universal
separator and cannot be part of any token. Write tokens to the output and check if a space must be
inserted before a token to prevent erroneous parsing of the resulting string. To streamline this check, you
should keep a list of all the tokens that were output after the last space (or after the beginning of the
source).

Note, that if a previous token conforms to a number token rule (regardless of whether it matches some
reserved token or not), then adding a token that starts with a digit affects the parsing, because the
previous token could have been parsed to a longer number token. Thus, a space must be inserted in this
case.

Similarly note, that if a previous token conforms to a word token rule (even if it matches reserved token),
then adding a token that starts with a letter, digit, underscore or dollar sign would similarly affect the
parsing. Thus, a space must be inserted in this case, too.

Now, the remaining case of parsing confusion comes from reserved tokens. This can happen at the
beginning of any of the previous tokens. To detect this case, scan the list of the previous tokens (since the
last output space) starting from the most recently output token backwards and check if parsing from that
position could result in recognition of a reserved token because of the new token you are about to output
without a space. There is a limit of 20 characters on the length of a reserved token, so this backward
iteration can be terminated after going more than 20 characters backwards in the output. This avoids
O(k2) time, where k in the number of tokens in the input source.

There are different working approaches to this check. In particular, you can avoid separate checks for
words and numbers and just do a straightforward attempt to parse a token from each test position,
assuming that you output a new token without a space. If that check shows that a different token can get
parsed, then a space must be output before the token you are about to write. Don’t forget to clear a list
of recently output tokens as you write a space to the output.

Problem K. King Kog’s Reception

Author: Vitaliy Aksenov
Statement and tests: Vitaliy Aksenov

Page 9 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

Total
time

0h 1h 2h 3h 4h 5h

20

45

Java Kotlin C++ Python Total

Accepted 0 0 20 0 20
Rejected 0 0 45 0 45

Total 0 0 65 0 65

solution team att time size lang

Fastest MIPT 6 1 79 3191 C++
Shortest SPbHSE 1 2 250 2168 C++
Max atts. UofLatvia 1 5 219 3819 C++

Let ti be the time of arrival of i-th knight, and di be his duration time.

Then, it can be seen that the answer to the query with the parameter T is equal to the
max

i: ti ≤ T
(ti +

∑

j:ti≤tj≤T
dj). In other words, we take the maximum among the sums for each knight i that

come before Teabeanie: the time at which i comes plus the duration of all the visits that initiate after i

comes, inclusive, but before Keabeanie comes, inclusive.

This value is a function of T , but there is a trick to eliminate this. In the second term, instead of the
sum between ti and T , we can rather calculate the sum from ti to the infinity and subtract the sum from
T + 1 to the infinity.

The subtracted part can be calculated with an interval tree, or a similar data structure.

Now, the sum from ti to the right is a formula that doesn’t depend on T . So we can use an interval tree
(or a similar data structure) to store the values (ti +

∑

j:ti≤tj

dj).

This interval tree should support taking maximum (which is needed to calculate the answer for Keabeanie’s
queries). Also, when a knight joins or cancels, this event affetcs all cells to the left of his ti in an additive
way, and the cell ti itself. So the interval tree should support addition on a segment, as well as single cell
alteration.

Problem L. Lazyland

Author: Pavel Mavrin
Statement and tests: Pavel Mavrin

Total
time

0h 1h 2h 3h 4h 5h

247

243

Java Kotlin C++ Python Total

Accepted 7 1 226 13 247
Rejected 14 0 204 25 243

Total 21 1 430 38 490

Page 10 of 11



ICPC 2018–2019, NEERC – Northern Eurasia Finals

St. Petersburg – Barnaul – Tbilisi – Almaty, December 2, 2018

solution team att time size lang

Fastest BelarusianSU 1 1 7 965 C++
Shortest SUrSU 3 1 30 367 Python
Max atts. RybinskSATU 8 121 955 C++

For each job, find the idler with the maximum value of bi, assign this job to this idler. Put all remaining
idlers in the array, sort them by the value of bi and assign idlers with minimum values to remaining jobs.

Problem M. Minegraphed

Author: Mikhail Dvorkin
Statement and tests: Mikhail Dvorkin

Total
time

0h 1h 2h 3h 4h 5h

66

212

Java Kotlin C++ Python Total

Accepted 1 0 65 0 66
Rejected 6 0 206 0 212

Total 7 0 271 0 278

solution team att time size lang

Fastest ITMO 1 1 67 2304 C++
Shortest UrFU 7 3 254 1844 C++
Max atts. TbilisiIBSU 1 9 255 2286 C++

Here’s one possible simple construction that needs only a 3n× 3n× 3 parallelepiped.

The field is generally filled with obstacles, with some exclusions, of course.

The vertex i will correspond to a north-south full-length tunnel in the bottom layer plus a west-east full-
length tunnel in the top layer. It’s enough to have two obstacle cells between neighbour tunnels. (Thus
the tunnels are x = 3i ∧ z = 0 and y = 3i ∧ z = 2).

For each i, to make these two tunnels connected, build a two-step “staircase” near their almost-intersection.

Now for each edge i → j in the graph, go to the almost-intersection of the i-th vertex’s top tunnel and
the j-th vertex’s bottom tunnel. Simply dig a full-height vertical hole near this place, so that it’s possible
to fall from top tunnel of i to bottom tunnel of j, but not possible to climb back.

Page 11 of 11


