
ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Problems summary

Recap: 310 teams, 12 problems, 5 hours. This analysis assumes knowledge of the problem statements
(published separately on http://nerc.itmo.ru/ web site).

Summary table lists problem name and stats:

• author — author of the original idea
• developer — developer of the problem statement and tests
• acc — the number of teams that had solved the problem (gray bar denotes a fraction of the teams

that solved the problem)
• runs — the number of total attempts
• succ — overall successful attempts rate (percent of accepted submissions to total, also shown as a

bar)

problem name author developer acc/runs succ

Apprentice Learning
Trajectory

Vitaliy Aksenov Mikhail Dvorkin, Ilya Zban 44 /280 15%

Balls of Buma Vitaliy Aksenov Vitaliy Aksenov 273 /575 47%

Cactus Revenge Gennady Korotkevich Gennady Korotkevich 0 /35 0%

DevOps Best Practices Dmitry Yakutov Dmitry Yakutov 18 /113 15%

Elections Pavel Mavrin Pavel Mavrin 197 /516 38%

Foolprüf Security Artem Vasilyev Artem Vasilyev 15 /38 39%

Game Relics Niyaz Nigmatullin Niyaz Nigmatullin 3 /32 9%

Help BerLine Mikhail Mirzayanov Mikhail Mirzayanov, Borys Minaiev 0 /14 0%

Intriguing Selection Petr Mitrichev Petr Mitrichev 36 /495 7%

Just Arrange the Icons Mikhail Mirzayanov Mikhail Mirzayanov, Pavel Kunyavsky 159 /645 24%

Key Storage Elena Kryuchkova Pavel Kunyavsky 105 /214 49%

Lexicography Georgiy Korneev Georgiy Korneev 190 /715 26%

Problem A. Apprentice Learning Trajectory

Author: Vitaliy Aksenov
Statement and tests: Mikhail Dvorkin, Ilya Zban

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

44
236

solution team att time size lang

Fastest SPbITMO: Reduce 1 55 1934 C++
Shortest IntITU: 2 1 181 1123 C++
Max atts. MIPT: LinkCat 9 292 2351 C++

There is an obvious greedy solution in O(nt): each time we can forge the sword which will be forged earlier
than the other.

This solution can be optimized to the O(n log n): greedy algorithm don’t often change the chosen master,
it can happen when one master starts or ends working. There are O(n) events when masters open and
close their forges, and between these events we can just use the fastest available master.

Page 1 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Problem B. Balls of Buma
Author: Vitaliy Aksenov
Statement and tests: Vitaliy Aksenov

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

273

302

solution team att time size lang

Fastest NN SU: Retired 1 8 1210 C++
Shortest KyrTurkMU: 8 1 50 394 Python
Max atts. NovSPedU: 1 17 238 757 Python

To start with we “compress” the neighbouring balls of the same color to segments. For example,
‘AAABBAAAAC’ becomes ‘(3, A), (2, B), (4, A), (1, C)’. Suppose that we insert a ball into i-th
segment. If our ball is of different color or the number of balls in i-th segment is less than 2, then
nothing happens and the elimination stops. After the elimination of this segments, i− 1-th and i+ 1-th
segments become neighbours. If they are of the same color and have total length at least 3, then “new”
joint segment becomes eliminated, otherwise, nothing happens and the elimination stops. Then, i− 2-th
and i+ 2-th segments become neighbours, and so on.

Thus, we can see that to eliminate all the balls we should insert a ball into the middle segment and the
answer should be either zero or the number of balls in the middle segment plus one (we can insert a ball
either between the balls or to the left and to the right of the segment).

Summing everything up, we should check the following criteria. If at least one is not satisfied then we
cannot eliminate all the balls and the answer is zero:

• The total number of segments m is odd.

• The number of balls in the middle (m/2+1-th) segment is not one, i.e., by adding a ball the length
of the segment should become at least 3.

• The paired segments, i.e., m/2 + 1 − i-th and m/2 + 1 + i-th, should have at least three balls in
total and all the balls in them should be of the same color.

Problem C. Cactus Revenge

Author: Gennady Korotkevich
Statement and tests: Gennady Korotkevich

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

35

The number of edges in the cactus m = 1
2

∑n
i=1 di. If m isn’t an integer or m < n−1, there is no solution.

If m = n−1, a tree can always be built inductively: remove any leaf v (i.e. a vertex s.t. dv = 1), decrement
the degree of the vertex with the largest degree u, build a tree on the remaining n−1 vertices, and restore v
connecting it to u with an edge.

Page 2 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Otherwise, the number of simple cycles our cactus must have is c = m− (n− 1). Any spanning tree of a
cactus contains n−1 edges, while each of the remaining c edges creates a simple cycle that passes through
at least 2 edges of the tree. As every tree edge must belong to at most one simple cycle, a solution might
only exist if c ≤

⌊

n−1
2

⌋

.

If all degrees are even, the c ≤
⌊

n−1
2

⌋

condition is actually sufficient. We can build a cactus inductively:
if di = 2 for all i, just build a cycle; otherwise, pick vertices u and v s.t. du = dv = 2 (they always exist,
otherwise c is too large) and a vertex w s.t. dw ≥ 4, remove u and v and decrease dw by 2, build a cactus
on the remaining n− 2 vertices, and restore u and v connecting u, v, and w into a new cycle.

If some degrees are odd, we might need a stronger condition. Let’s turn our attention to bridges. Suppose
that we have o vertices with odd degrees, and l of them are leaves. Every vertex with an odd degree
must have an incident bridge, and all leaves must have distinct incident bridges. Therefore, the number
of bridges in our cactus, b, can be bounded as b ≥ max(o2 , l).

As bridges do not belong to any cycles, we can further bound c as c ≤
⌊

n−1−max(o
2
,l)

2

⌋

. Finally, this

condition is sufficient, which can be shown constructively as follows. If l ≤ o
2 :

• split vertices with odd degrees into pairs arbitrarily, but make sure not to pair up two leaves;

• connect vertices in every pair with an edge and contract all these edges. In general, when an edge
between vertices u and v is contracted, a new vertex with degree du + dv − 2 replaces u and v;

• build a cactus on the remaining n − o
2 vertices: this cactus must have the same number of simple

cycles c, and since c ≤
⌊

n− o
2
−1

2

⌋

and all degrees are even, this has been shown to be possible;

• expand the contracted edges. Be careful while splitting the edges incident to the new vertices between
the original vertices: pairs of edges belonging to the same cycle must be incident to the same original
vertex after expansion.

If l > o
2 , only the first two steps are different:

• pair o− l leaves with all o− l non-leaf odd-degree vertices arbitrarily, connect vertices in every pair
with an edge and contract all these edges. At this point, every degree is either even or equal to 1;

• pair the remaining 2l− o leaves arbitrarily, connect leaves in every pair to an arbitrary vertex with
degree at least 4 with two edges, contract these edges as well.

Problem D. DevOps Best Practices

Author: Dmitry Yakutov
Statement and tests: Dmitry Yakutov

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

18
95

solution team att time size lang

Fastest IntITU: 1 2 97 1757 C++
Shortest IntITU: 1 2 97 1757 C++
Max atts. HSE: Sharingan pwr 8 283 4539 C++

Page 3 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Let’s set the following target: to deploy all needed features to as many servers as possible using one edge
per server. Note the following facts:

1. All edges from server si distribitue the same set of features.

2. If CD configuration doesn’t deploy all needed features to server s2 (set F) and server s1 distributes
set of features F , then it is enough to add CD edge from s1 to s2 and do not add other edges to s2.

3. If we deployed all needed features to server s2 using one edge from server s1, then we need to turn
on CT on s2. Otherwise server s2 can’t help us to reach our target: all edges from s2 can be replaced
with edge from s1.

Let’s split all servers by number of features cnt that should be deployed to server:

• cnt = 0. Such server s doesn’t need any features to be deployed, we don’t need to add edges to s.

• cnt = 3. Such server needs all features, so we can add single edge from server 1 to these servers.

• cnt = 1. Such server needs only one feature, so there is no poing to add two or more edges to such
server.

• cnt = 2. Such server s needs two features, sometimes we need to add two edges to s. In this case
edge from s1 adds feature f1 and another edge from s2 adds feature f2. We don’t need to turn on
CT on s because there already exists a way to add f1 using edge from s1 and a way to add f2 using
edge from s2. It is better to turn off CT on s and add edge from s to all other servers that need f1
and f2 to be deployed.

So the solution is the following repeating process.

• Add edge from s1 to s2 if s1 distributes the exact set of features that is needed by s2 and continue
the process. Fact (2) gives us that we need to turn on CT on s2 in this case.

• If it is impossible to perform previous step then try to deploy features to any server s with cnt = 2
using two edges and continue the process. Do not turn on CT on s in this case.

• If it is impossible to perform previous step then stop the process.

• If at the end of the process there exists server s with some needed undeployed feature f then it is
impossible to configurate CD/CT.

This algorithm gives us at most (n− 1)+3 = n+2 edges because we deploy features to s using two edges
at most three times: to one server s1,2 that needs features f1 and f2, to one server s1,3 that needs features
f1 and f3 and to one server s2,3 that needs features f2 and f3.

Problem E. Elections
Author: Pavel Mavrin
Statement and tests: Pavel Mavrin

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

197

319

Page 4 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

solution team att time size lang

Fastest SPbITMO: 1 StdDev 1 8 1698 C++
Shortest Moscow SU: char* a 1 95 805 Python
Max atts. Tomsk PU: 3 9 279 1447 C++

Let’s fix the candidate who will be above the opposition one. We should check all candidates and choose
minimal result among them.

When we have two candidates, the only important thing is difference between number of votes casted for
them. Let’s sort all polling stations by this difference. We need to remove biggest difference, until, number
of votes casted for non-opposition candidate become smaller.

No optimization of this process required, naive implementation will work with complexity O(n ·m logm).

Problem F. Foolprüf Security

Author: Artem Vasilyev
Statement and tests: Artem Vasilyev

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

15

23

solution team att time size lang

Fastest MIPT: Godnotent 1 105 2192 C++
Shortest Latvia: 2 1 175 1768 C++
Max atts. MIPT: Fennecs 2 296 5585 C++

The answer is “Yes” if and only if ka ≤ m−1 and kb ≤ n−1. Let’s look at the Prüfer code for an arbitrary
spanning tree of a complete bipartite graph Kn,m (which is what was described in the statement). Every
time we delete a vertex from the left part, we add a vertex from the right into the code, and the other
way around. In the end, only one edge remains, which means that n − 1 vertices from the left part and
m− 1 vertices from the right part were deleted. This proves that the Prüfer code contains exactly n − 1
numbers from n+ 1 to n+m and exactly m− 1 numbers from 1 to n.

Let’s prove that any sequence of length m − 1 consisting of numbers [1, n] and any sequence of n − 1
numbers [n + 1, n + m] can be uniquely interleaved to produce a spanning tree of Kn,m. Let’s find the
minimum number that doesn’t appear in any one of these two sequences, call it v. This number is a vertex
that was deleted on the first step. If v is between 1 and n, then it was connected to b1 (first number in
Bob’s sequence). If v is between n + 1 and n + m, then it was connected to a1 (first number in Alice’s
sequence). After we figure out the first edge, we delete the neighbor of v (either a1 or b1) and continue
restoring edges the same way. In the end, we will connect two remaining vertices with an edge.

Thus, if ka is less than m−1, we can add arbitrary numbers to Alice’s sequence and it will still be possible
to restore the tree. The same is true for Bob’s sequence. The tree restoration process can be implemented
in O(n log n) time, if we store all numbers that don’t occur in any sequence in priority queue.

Page 5 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Problem G. Game Relics
Author: Niyaz Nigmatullin
Statement and tests: Niyaz Nigmatullin

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

3
29

solution team att time size lang

Fastest SPbSU: 25 1 66 1825 C++
Shortest MIPT: Fennecs 3 167 1453 C++
Max atts. NN SU: Retired 4 287 3578 C++

When k relics are bought, the expected number of shards spent for buying one more relic by keeping

paying x shards for random relic is
(

n
n−k

+ 1
)

· x
2 .

The optimal strategy is to never random after buying any relic for its price. It means that when it’s
optimal to buy a relic for its price, we can buy the remaining relics in arbitrary order. So, the way of
buying relics can be changed:

1. Gloria chooses either she wants to buy for its price, or she wants to keep getting random relic for x
shards.

2. Then if Gloria chooses the former, she will buy a random relic for its price that she doesn’t own yet.

3. She goes to step 1.

So the probability that at some point Gloria will own a certain subset of relics is equal for all subsets of
k relics, and it equals to 1

(nk)
.

Let’s say there are b relics that Gloria doesn’t own yet with costs a1, a2, . . . , ab. It turns out that if∑
ai
b

≤
(

n
b
+ 1

)

· x
2 then Gloria should buy a random relic for its cost with expected cost

∑
ai
b

, otherwise
Gloria should buy a random relic for expected cost

(

n
b
+ 1

)

· x
2 .

So after coming up with the facts above, the solution is to calculate fs,k — the number of item subsets of
size k with total sum of item prices s. This function can be calculated as in knapsack problem.

The answer is:
∑ fs,k

(nk)
·min

(

S−s
n−k

,
(

n
n−k

+ 1
)

· x
2

)

, where S =
∑

ci.

Problem H. Help BerLine

Author: Mikhail Mirzayanov
Statement and tests: Mikhail Mirzayanov, Borys Minaiev

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

14

First, let’s constructively prove that three frequencies are enough for up to four base stations.

Page 6 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

1) For each of the (chronologically) first three base stations, use a new frequency that wasn’t used before.
So far all frequencies are unique, thus all nonempty subsegments are fine.

2) For the (chronologically) fourth base station, use a frequency that is not present among its neighbour(s).
Without loss of generality, before its turning on, the other three base stations had frequencies [1, 2, 3].
Thus, after turning on the fourth one, we will have [+2, 1, 2, 3], [1,+3, 2, 3], [1, 2,+1, 3], or [1, 2, 3,+1],
which are all fine.

Now, having solved n ≤ 4 with three frequencies, let’s solve n > 4. We will reduce this problem to the
problem of size

⌈

n
3

⌉

using three new frequencies. This will allow us to solve the problem of size n ≤ 4 · 3k

using 3k+3 frequencies. Thus 24 frequencies will be enough to solve the problem of size n ≤ 4 ·37 = 8748.

Divide the n base stations into consecutive triples (geographically, not chronologically). The last one
might be less than a triple, there should be no problematic special case there. In each triple mark the
base station that will be turned on earlier than the two other ones.

On these
⌈

n
3

⌉

marked base stations, solve the problem recursively. We now need to solve the entire problem
of size n using three more frequencies.

Let’s turn on all n base stations in the chronological order. If the considered base station is marked, then
use the frequency obtained from the recursive solution. Otherwise, we need to use one of the three new
frequencies.

Let’s evaluate, how many unmarked turned on base stations are there (including the considered one)
strictly between the closest marked and turned on station to its left and the closest marked and turned
on station to its right. The maximum value is 4, which is reached in the following situation: [Marked and
turned on b. s., unmarked and turned on b. s., unmarked and turned on b. s.], [Turned off triple], [Turned
off triple], . . ., [Turned off triple], [Unmarked and turned on b. s., unmarked and turned on b. s., marked
and turned on b. s.]. Thus in order to select the frequency for the considered base station, we can use the
algorithm for n ≤ 4.

Let’s prove that after this frequency assignment all subsegments of turned on base stations are fine. If a
subsegment contains at least one marked base station, consider all marked base stations it contains. It is
a non-empty subsegment in terms of the recursive subproblem, and since the recursive solution is correct
for any moment of time, there is a unique frequency on this subsegment. Otherwise, if there is no marked
base stations in this subsegment, then we’re inside a local problem of size at most 4, the correctness of
solution for which was shown above.

Problem I. Intriguing Selection

Author: Petr Mitrichev
Statement and tests: Petr Mitrichev

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

36
459

solution team att time size lang

Fastest NN SU: Retired 1 97 1885 C++
Shortest SPbITMO: 4 1 187 1235 C++
Max atts. SPbSU: Havka 13 254 3633 C++

We are aware of multiple working approaches for this problem, here is the simplest one: let us take
arbitrary n+ 1 players and split them arbitrarily into two groups of size at least 2, for example of size 2

Page 7 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

and n− 1.

Now let’s find the player with the smallest strength in each group in any possible way (using only
comparisons within the group), and then compare those two players between themselves. The one which
compares smaller is the player with the smallest strength among the n+ 1 chosen players, and therefore
is not among the n players with the highest strength, so we can discard them from consideration.

Now let’s add one more player to one of the two groups in such a way that both have size at least 2, and
repeat the step above, discarding one more player from consideration. We repeat this until there are no
more players to add (discarding n players in total).

In the end we’re left with the n players with the highest strength split into two groups, and we have never
compared any player from the first group to any player of the second group, therefore there are at least
two (more precisely, at least three) possible orderings of those n players.

Problem J. Just Arrange the Icons

Author: Mikhail Mirzayanov
Statement and tests: Mikhail Mirzayanov, Pavel Kunyavsky

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

159

486

solution team att time size lang

Fastest IntITU: 1 1 9 1024 C++
Shortest BurSU: 4 2 191 836 C++
Max atts. Astana ITU: 1 13 260 1898 C++

Note that we don’t need the colors of the icons, but only the number of icons for each color is needed.
Let’s count these numbers, ignoring colors that don’t appear in the input. Also, let’s sort these numbers in
order of non-decreasing. Consider, f = [f1, f2, . . . , fk] is the resulting sequence (0 < f1 ≤ f2 ≤ · · · ≤ fk),
where k is number of colors which appear in the input and fj is number of icons for some color.

Let’s iterate over all possible screen sizes: from 1 to f1 + 1. Consider the current screen size is s. Let’s
count the total number of screens of size s needed to fit all the icons.

Obviously, for fixed s for each color the number of screens can be calculated independently and the
required total number of screens is just a sum of the number of screens for each color.

Consider, fj is the number of icons with some color and s is the screen size. Let’s find the number of
screens to fit all of them or report that it is impossible to do. The total number of screens to fit fj icons
is qj = ⌈fj/s⌉ is the solution exists. On qj full or almost full screens we can place at least qj · (s − 1)
icons. So if fj < qj · (s− 1) the size s is unsuitable to fit fj icons in the required way (and the screen size
s should be discarded). If s is suitable for all the numbers f1, f2, . . . , fk then the total number of screens
is q1 + q2 + · · ·+ qk.

Print the minimal value over all possible screen sizes s from 1 to f1 + 1.

The number of operations of the main part of the solution is O(f1 · k), but
f1 + f1 + · · · + f1 ≤ f1 + f2 + · · ·+ fk = n. So, the actual compexity of the main part is O(n).

Page 8 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

Problem K. Key Storage

Author: Elena Kryuchkova
Statement and tests: Pavel Kunyavsky

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

105

109

solution team att time size lang

Fastest SPbSU: 25 1 36 1273 C++
Shortest BurSU: 4 2 245 938 C++
Max atts. Ulyanovsk STU: 1 7 291 2257 C++

Let’s calculate fingerprint by definition. Key can be uniquely reconstructed if we fix order of remainders,
so we can calculate number of valid orders instead. Order is valid, if it’s not finishes with zero, and each
remainder is strictly less than divider.

Let n be size of fingerprint. For the first try let’s forget about “not finish with zero” restriction. To calculate
number of orders, let’s choose position for remainder in decreasing order. For each value v, there is set of
valid positions, which size is equal to n −max(0, v − 1). Also, order of same values doesn’t matter, so,
answer should be divided by number of equal remainders, which was already set, including this one. All
already chosen positions are in this set. So if f0, f1, . . . , fn−1 is fingerprint sorted in non-increasing order,

answer is
n−1
∏

i=0

max(0,n−max(0,fi−1)−i)
number of j≤i, such that fi=fj

.

To handle “not finish with zero” restriction, one can calculate number of fingerprints, which finishes with
zero, but valid for all other conditions, and subtract them. This number is equal to number of valid
fingerprints, with multi-set after removing one zero from original one.

Problem L. Lexicography

Author: Georgiy Korneev
Statement and tests: Georgiy Korneev

Accepted
Rejected

Total
time

0h 1h 2h 3h 4h 5h

190

525

solution team att time size lang

Fastest SPbSU: Quick Burg 1 11 965 C++
Shortest BurSU: 4 2 55 661 C++
Max atts. ChelSU: admin 28 288 1459 Python

Let’s count the number of times each letter occurs in the input: cp for p from ‘a’ to ‘z’.

We will construct the answer letter-by-letter while maintaining the value t — the index of the first word
that has the same prefix as the k-th word. Initially, all words are empty, so t = 1.

The solution contains two phases.

Page 9 of 10

ICPC 2019–2020, NERC – Northern Eurasia Finals

St. Petersburg, Barnaul, Tbilisi, and Almaty, December 1, 2019

On the first phase, let’s consider the minimal available letter p. We have cp instances of this letter. There
are two possible cases:

• cp > k − t. In this case, we will add a single letter p to all words from t to k (inclusively) and solve
the same problem for cp := cp − (k − t+ 1).

• cp ≤ k − t. In this case, we will add single letter p to cp words, starting from t-th word, update
t := t+ cp, and move to the next available letter.

The first phase stops when k-th word contains l letters.

On the second phase, some words before k-th may have less than l letters, and all words after k-th have
no letters at all. The distribution of the remaining letters does not affect the order of the first k words,
so we may arrange them in any way, for example, just appending each word until it has l letters.

We build a non-decreasing sequence of words wi (i = 1..n), let’s proof that wk is the minimal possible
word. If it is false, we consider a counterexample: Wi — non-decreasing sequence of n words, build from
the same letters, where wk > Wk. Let’s consider the first difference in the construction order: wij 6= Wij.
There are two possibilities:

• wij > Wij . In this case, we have available letter Wij, and do not use it. This is not possible, as we
append all letters in the lexicographical order, withouth skips.

• wij < Wij . In this case wi < Wi and we “saved” letter wij . Let’s consider the place where this letter
is used Wi′j′ = wij and wi′j′ 6= wij . As we using letter in the lexicographical order Wi′j′ < wij , so if
we replace Wi′j′ by wi′j′ , the word Wi′ will either keep it’s place, or will be moved towards the head
of the list. In the first case, the only change is that wi < Wi, so we either wk < Wk, or we have an
example where first difference comes later than at (i, j) and we will iterate the proof. In the second
case

Page 10 of 10

