
ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem A. Adrenaline Rush
Time limit: 3 seconds
Memory limit: 1024 megabytes

Alice’s friend is a big fan of the Adrenaline Rush racing competition and always strives to attend every
race. However, this time, Alice is the one watching the race. To ensure her friend does not miss any
important details, Alice decides to take notes on everything that happens on the track.

The first thing Alice notices before the race begins is the numbering of the cars. All the cars line up in
front of the starting line in a specific order. The car closest to the line is numbered 1, the second car is
numbered 2, and so on, up to the last car, which is numbered n. How convenient! — Alice thought.

The race begins with the countdown: “Three! Two! One! Go!“. Alice observes that the cars start in their
original order. However, as the race progresses, their order changes. She records whenever one car overtakes
another, essentially swapping places with it on the track.

During the race, Alice notices something curious: no car overtakes another more than once. In other words,
for any two cars x and y, there are at most two overtakes between them during the race: “x overtakes y“
and/or “y overtakes x“.

At the end of the race, Alice carefully writes down the final order of the cars c1, c2, . . . , cn, where c1
represents the winner of the race.

Alice’s friend, however, is only interested in the final ranking and discards all of Alice’s notes except for
the final ordering. As Alice is quite curious, she wonders: What is the longest possible sequence of overtakes
she could have observed during the race? Your task is to help Alice answer this question.

Input
The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of cars in the race.

The second line contains a permutation c1, c2, . . . , cn (1 ≤ ci ≤ n, ci ̸= cj) — the final order of the cars.

Output
The first line of the output should contain a single integer m — the maximum possible number of overtakes
that can occur during the race.

Each of the next m lines should contain two integers x and y (1 ≤ x, y ≤ n, x ̸= y) representing an overtake
event, where car x overtakes car y. This means that car x was directly behind car y and overtakes it. The
overtakes must be listed in the order they occurred during the race.

After all m overtakes have occurred, the cars must arrive at the finish line in the order c1, c2, . . . , cn. Note
that any car x should not overtake another car y more than once.

If there are multiple possible longest sequences of overtakes, output any of them.

Examples
standard input standard output

3

2 3 1

4

2 1

3 1

3 2

2 3

1

1

0

2

1 2

2

2 1

1 2

Page 1 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem B. BitBitJump
Time limit: 3 seconds
Memory limit: 1024 megabytes

BitBitJump is a one instruction set computer. Thus, it has only one instruction: bbj a, b, c, which
copies an a-th bit of memory to the b-th bit of memory and then jumps to address c.

Let’s consider a 16-bit BitBitJump computer. It has 216 bits of memory organized in 212 16-bit words.
Words are counted from 0, and bits in a word are counted from the least significant (0-th) bit to the most
significant (15-th) bit.

This computer has a single instruction pointer register (IP), and execution starts with IP = 0. If the
current IP ≥ 212 − 2, the computer stops. Otherwise, it uses the IP-th word as a, the (IP + 1)-th word
as b, the (IP + 2)-th word as c, and performs the bbj a, b, c instruction: copies the (a & 15)-th bit of
the (a ≫ 4)-th word to the (b & 15)-th bit of the (b ≫ 4)-th word, and sets IP = c. Here, ‘&’ represents
bitwise AND, and ‘≫’ represents bitwise shift right operation. Notice that the value of c is read from
memory after the bit copy, so if the instruction modified its own c, the new value will be used for IP.

For example, the bbj 32, 35, 5 instruction placed at the memory start will be executed as follows:
1. a = 32 and b = 35 are read from the memory.
2. The 0-th bit of the 2-nd word (its value is 5&1 = 1) will be copied to the 3-rd bit of the same word,

so the 2-nd word will have the value of 5 + 23 = 13.
3. Then c = 13 is read from memory, and IP is set to 13.

Let’s call the (212 − 1)-th word (216 − 16 . . . 216 − 1-th bits of memory) an IO-word. An x-comparator is
a program which checks whether the value of the IO-word is equal to x. It should stop after execution of
no more than 212 instructions, leaving the lowest bit of the IO-word equal to 1 if the original value of the
IO-word was equal to x, and 0 otherwise.

Write a program that generates an x-comparator for the given value of x.

Input
The input contains a single decimal integer x (0 ≤ x < 216) — the value for which to build the
x-comparator.

Output
The output should contain the x-comparator program dump. Dump consists of values for the first n words
of the memory (1 ≤ n ≤ 212 − 1). All other words, except the IO-word, are filled with zeroes.

For each of the n words, output its value as a four-character hexadecimal number. Values should be
delimited by space or new line characters.

Example
standard input

0

standard output

fff0 0026 0003 fff1 0056 0006 fff2 0086 0009 fff3 00b6 000c fff4 00e6 000f

fff5 0116 0012 fff6 0146 0015 fff7 0176 0018 fff8 01a6 001b fff9 01d6 001e

fffa 0206 0021 fffb 0236 0024 fffc 0266 0027 fffd 0296 002a fffe 02c6 002d

ffff 02f6 0030

0004 fff0 0fff

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff

0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff

0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff 0000 fff0 0fff

0000 fff0 0fff

Page 2 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Note
A dump in the sample output contains a 0-comparator. It consists of the following blocks:

• 16 instructions: the i-th of them, counting from 0, copies the i-th bit of the input word to the 6-th
bit of its own c. If the copied bit is zero, it will proceed to the next instruction; otherwise, the next
instruction number will be increased by 64.

• The following instruction copies the 4-th bit of the 0-th word (value 1) to the 0-th bit of the IO-word
and jumps to the stop address.

• 16 unused words filled with 0.

• 16 equal instructions (starting from word 67). Each of them copies the 0-th bit of the 0-th word
(value 0) to the 0-th bit of the IO-word and jumps to the stop address.

Page 3 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem C. Cactus without Bridges
Time limit: 3 seconds
Memory limit: 1024 megabytes

Caroline asked you for help in solving a cactus problem one year ago. During the last year, she researched
extensively about cactuses. Today, she is the one presenting the problem.

You are given a cactus without bridges and also the length of each odd simple cycle is greater
than or equal to the number of odd simple cycles in cactus. Your task is to answer whether it’s
possible to label the cactus edges with positive integers such that the following conditions are satisfied:

• Let’s define the maximum label with t. All the integers 1, 2, . . ., t are used in labeling (note that
you do not need to minimize or maximize the value of t);

• For each vertex v of the given cactus, the labels of edges incident to the vertex v should be different
and should form an interval of consecutive integers.

An edge in the graph is called bridge if the deletion of that edge increases the number of connected
components of the graph. A cactus is a connected undirected graph in which every edge lies on at most
one simple cycle. Intuitively, a cactus is a generalization of a tree where some cycles are allowed. Multiedges
(multiple edges between a pair of vertices) and loops (edges that connect a vertex to itself) are not allowed
in a cactus.

Input

The first line contains two integers n and m (3 ≤ n ≤ 105, n ≤ m ≤ ⌊3(n−1)
2 ⌋) — the number of vertices

and edges in the cactus. Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n; u ̸= v) —
the edges of the cactus. The given cactus satisfies all constraints from the problem statement.

Output
If finding the labeling satisfying the problem’s conditions is impossible, output the single line with the
word “NO”. Otherwise, in the first line output the single word “YES”. In the second line output an integer
t (1 ≤ t ≤ m) — the number of different labels. In the third line output should contain m integers ci
(1 ≤ i ≤ m, 1 ≤ ci ≤ t) — the labels of the edges.

Examples
standard input standard output Illustration

5 5

1 2

2 3

3 4

4 5

5 1

NO

1

2

3

4

5

8 10

1 2

2 3

1 3

1 4

1 5

4 5

5 6

6 7

7 8

8 5

YES

4

1 2 3 2 4 3 1 2 3 2

1
2

3

4

5

6 8

7

1

2
3

2

4
3

1

2 3

2

Page 4 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem D. DAG Serialization
Time limit: 3 seconds
Memory limit: 1024 megabytes

Consider a simple single-bit boolean register that supports two operations:

• set — sets the register to true if it was false, and returns true; otherwise, it returns false;
• unset — sets the register to false if it was true, and returns true; otherwise, it returns false.

The initial state of the register is false. Suppose there were n operations opi (for 1 ≤ i ≤ n) where at
most two operations returned true. Also, we are given the partial order of operations as a directed
acyclic graph (DAG): an edge i → j means that opi happened before opj . You are asked whether it is
possible to put these operations in some linear sequential order that satisfies the given partial order and
such that if operations are applied to the register in that order, their results are the same as given.

Input
In the first line, you are given an integer n — the number of operations (1 ≤ n ≤ 105). In the following
n lines, you are given operations in the format “type result”, where type is either “set” or “unset” and
result is either “true” or “false”. It is guaranteed that at most two operations have “true” results.

In the next line, you are given an integer m — the number of arcs of the DAG (0 ≤ m ≤ 105). In the
following m lines, you are given arcs — pairs of integers a and b (1 ≤ a, b ≤ n; a ̸= b). Each arc indicates
that operation opa happened before operation opb.

Output
Print any linear order of operations that satisfies the DAG constraints and ensures the results of the
operations match the ones given in the input. If a correct operation order does not exist, print −1.

Examples
standard input standard output

5

set true

unset true

set false

unset false

unset false

2

1 4

5 2

5 1 3 2 4

3

unset true

unset false

set true

0

2 3 1

2

unset false

set true

1

2 1

-1

2

unset false

set false

0

-1

Page 5 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem E. Expression Correction
Time limit: 3 seconds
Memory limit: 1024 megabytes

Eve is studying mathematics in school. They’ve already learned how to perform addition and subtraction
of decimal numbers and are practicing it by solving fun puzzles. The specific type of the puzzle they are
solving is described below. They are given an equality with addition and subtraction which may or may
not be a correct one. They have to verify the equality, and if it is not a correct one, then they have to tell
if it is possible to turn it into a correct one by moving one digit to a different place in the equality.

Let us formally define the equality in this puzzle:

• Number is a string of at least one and at most 10 decimal digits (‘0’ to ‘9’) that has no extra
leading zeroes (the only number that is allowed to start with the zero digit is “0”).

• Expression is a string composed of one or more numbers, as defined above, that are separated with
addition (‘+’) or subtraction (‘-’) operators.

• Equality is a string composed of an expression, as defined above, followed by an equals sign (‘=’),
followed by another expression.

• Correct equality is an equality where both expressions on the left and right hand sides of the equals
sign evaluate to the same decimal number according to the standard arithmetic. Note that while
all the numbers in the expression are positive, the evaluated number can be negative. Also, the
evaluated number can be longer than 10 digits.

• Moving a digit in an equality means removing a digit from any position in the string and inserting
it into another position so that the resulting string is again an equality.

The puzzle is pretty straightforward once you know how to add and subtract decimal numbers, but it is
tenuous. It is easy to get distracted and make a mistake while performing computation. Your task is to
write a program that solves the expression correction puzzle to help Eve.

Input
The input file consists of a single line — an equality as defined in the problem statement. The total length
of the input string does not exceed 100 characters.

Output
Write a single line to the output. If the input contains a correct equality, output a single word “Correct”.
Otherwise, if the input equality can be turned into a correct one by moving one digit, output the resulting
correct equality. If there are multiple possible correct equalities after moving one digit, you may output
any one of them. Otherwise, output a single word “Impossible”.

Examples
standard input standard output

2+2=4 Correct

123456789+9876543210=111111110+11-1 123456789+987654321=1111111100+11-1

10+9=10 Impossible

24=55-13 42=55-13

1000000000-10=9999999999 Impossible

Page 6 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem F. Fix Flooded Floor
Time limit: 3 seconds
Memory limit: 1024 megabytes

Archimedes conducted his famous experiments on buoyancy. But not everyone knows that while he was
taking a bath, he was too focused and didn’t notice the moment when the water overflowed over the edge
of the bath and flooded the floor near the wall. His expensive parquet was irreversibly damaged!

Archimedes noticed that not all was lost, and there were still several undamaged parquet pieces. The
parquet near the wall had the shape of a long narrow stripe of 2× n cells. Archimedes had an unlimited
supply of 1 × 2 parquet pieces that could be placed parallel or perpendicular to the wall. Archimedes
didn’t want to cut the parquet pieces. As a great scientist, he figured out that there was exactly one way
to restore the parquet by filling the damaged area of the parquet with the non-overlapping 1 × 2 cell
shaped pieces.

Help historians to check Archimedes’ calculations. For the given configuration of the 2× n parquet floor,
determine whether there is exactly one way to fill the damaged parquet cells with the 1× 2 cell parquet
pieces. If Archimedes was wrong, find out whether there are multiple ways to restore the parquet, or there
are no ways at all.

Input
The first line contains a single integer T (1 ≤ T ≤ 104) — the number of test cases to solve.

Then the description of test cases follows.

The first line of each test case contains a single integer n (1 ≤ n ≤ 2 · 105) — the length of the parquet
floor.

The following two lines contain exactly n characters each and describe the parquet, where ‘.’ denotes a
damaged cell and ‘#’ denotes an undamaged cell.

The total sum of n in all T test cases doesn’t exceed 2 · 105.

Output
For each test case, print “Unique” if there is exactly one way to restore the parquet, “Multiple” if there
are multiple ways to do so, or “None” if it is impossible to restore the parquet.

Example
standard input standard output

4

10

#.......##

##..#.##..

6

...#..

..#...

8

........

........

3

###

###

Unique

None

Multiple

Unique

Page 7 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem G. Geometric Balance
Time limit: 3 seconds
Memory limit: 1024 megabytes

Peter’s little brother Ivan likes to play with a turtle. The turtle is a special toy that lives on the plane
and can execute three commands:

• Rotate a degrees counterclockwise.
• Draw d units in the direction it is facing while dispensing ink. No segment of the plane will be

covered by ink more than once.
• Move d units in the direction it is facing without drawing.

Ivan just learned about the compass, so he will only rotate his turtle so it faces one of eight cardinal or
ordinal directions (angles a in rotate commands are always divisible by 45). Also, he will perform at least
one draw command.

Peter has noted all the commands Ivan has given to his turtle. He thinks that the image drawn by the
turtle is adorable. Now Peter wonders about the smallest positive angle b such that he can perform the
following operations: move the turtle to a point of his choosing, rotate it by b degrees, and execute all the
commands in the same order. These operations should produce the same image as the original one. Can
you help Peter?

Note, two images are considered the same if the sets of points covered by ink on the plane are the same
in both of the images.

Input
The first line of the input contains a single integer n (1 ≤ n ≤ 50000) — the number of commands Ivan
has given.

The next n lines contain commands. Each command is one of:

• “rotate a” (45 ≤ a ≤ 360) where a is divisible by 45;
• “draw d” (1 ≤ d ≤ 109);
• “move d” (1 ≤ d ≤ 109).

At least one and at most 2000 of the commands are draw. It is guaranteed that no segment of the plane
will be covered by ink more than once.

Output
Output a single number, the answer to the question. The answer always exists.

Examples
standard input standard output

1

draw 10

180

7

draw 1

rotate 90

draw 1

rotate 90

draw 1

rotate 90

draw 1

90

3

draw 1

move 1

draw 2

360

Page 8 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem H. Hunting Hoglins in Hogwarts
Time limit: 6 seconds
Memory limit: 1024 megabytes

This is an interactive problem.

Harry and Hermione are trying to hunt down hoglins which are haunting Hogwarts. There is a long hallway
in Hogwarts, consisting of n individual cells, numbered from 1 to n from the left to the right.

Hermione can cast a spell that would block any cell of the hallway of her choosing. After the spell is cast,
the blocked cell will remain blocked while she casts other spells.

Hoglins are simple creatures; all they do is randomly move around and bump into stuff. To be more
precise, every hoglin has a range which it considers to be accessible. Initially, when the hoglin appears, it
is a range from the cell 1 to the cell n.

Initially, a single hoglin appears in a cell of the hallway chosen uniformly at random. Then, until this
hoglin is caught, the following happens on every round of the hunt:

• Hermione can cast a spell to block any single cell of her choosing, or do nothing.

• If the cell she is trying to block is the cell with a hoglin in it, the hoglin is caught. After that,
all the blocked cells become free again, and, if there are more hoglins to be caught, a new hoglin
immediately appears in a random location, and the hunt begins again.

• Otherwise, the hoglin chooses a cell uniformly at random from its accessible range and tries to move
to that cell, moving one cell at a time towards a chosen cell. Regardless of the distance, all the steps
of the movement, as described below, happen in the same round.

• If the chosen cell is to the right of the hoglin, it moves to the right; if the chosen cell is to the left
of the hoglin, it moves to the left. If the chosen cell is the same as where the hoglin is now, it does
nothing.

• If at any point during the movement towards the chosen cell a hoglin is trying to move to the right
or to the left from an unblocked cell at position i to the neighbouring blocked cell at position i± 1,
the hoglin updates the right or left boundary of its accessible range correspondingly to be i.

• If on the way to the chosen cell, the hoglin tries to move to a blocked cell, Harry and Hermione
hear a loud sound, as the hoglin bumps into the blocked cell. In this case, the hoglin returns to the
position it has originally started from at the beginning of this round.

• Otherwise, if the hoglin does not bump into any blocked cells on its way, it does not change its
accessible range and stays at the new position. In that case, Harry and Hermione hear nothing.

To free Hogwarts from hoglins, Harry and Hermione should catch k of them, but they don’t have much
time. They can only afford to hunt hoglins for at most 200 000 rounds. Please help them find an efficient
strategy to do that.

Interaction Protocol
First, the testing system will write two integers n and k (1 ≤ n ≤ 1018; 1 ≤ k ≤ 800) — the number of
cells in Hogwarts’ hallway and the number of hoglins that should be caught. Then the catching process
begins.

The following interaction proceeds in rounds as described in the problem statement.

At the start of each round, your program should output Hermione’s action — an integer p (0 ≤ p ≤ n)
representing the position of the cell Hermione is going to block. If p = 0 or the cell at position p is already
blocked, she does nothing in this round.

Page 9 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Then, if the current position of the hoglin is at the newly blocked cell p, the hoglin is caught; the testing
system outputs 2, all the blocked cells become free, and interaction rounds start again. In case you caught
the k-th hoglin, the testing system outputs 3 instead of 2, and your program should immediately stop
execution.

Otherwise, the hoglin attempts to move according to the rules described in the problem statement. If in
the process it bumps into any blocked cell, the testing system outputs 1; otherwise, it outputs 0.

If your 200 000-th action does not catch the k-th hoglin, the testing system outputs -1 instead of its usual
answer, and your program should immediately stop execution to guarantee the “Wrong Answer” verdict.

The interactor in this problem is not adaptive. It is guaranteed that the hoglins follow the rules described
in the problem statement. The starting cell for each hoglin is chosen uniformly at random and their moves
are chosen uniformly at random from the range of cells that they consider accessible.

The problem has at most 15 tests.

Here is the summary of all possible interactor answers:
• -1 — too many actions;
• 0 — hoglin moved successfully, did not bump;
• 1 — hoglin attempted to move, bumped into blocked cell;
• 2 — hoglin is caught, interaction starts again;
• 3 — hoglin is caught, stop.

Example
standard input standard output Illustration

9 2

0

1

1

0

1

2

1

0

0

3

3

7

5

1

9

4

5

7

0

2

1 2 3 4 5 6 7 8 9

start at 8

block 3
move to 4, success

block 7
move to 9, bumped

block 5
move to 3, bumped

block 1
move to 4, success

block 9
move to 5, bumped

block 4, caught

start at 3

block 5
move to 9, bumped

block 7
move to 1, success

do nothing

move to 2, success

block 2, caught

Note
We show the sample from the point of view of the hoglins.

The black dot shows the current position of the hoglin.

Crosses mark blocked cells.

White cells mark the range which the hoglin considers to be accessible; other cells are marked gray.

On the right is the action that was performed by either Hermione or the hoglin to get to this state from
the previous one.

Page 10 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem I. Incompetent Delivery Guy
Time limit: 3 seconds
Memory limit: 1024 megabytes

In Isengard, wizard Saruman, with the help of some magic spells, organized a transport system between
n towers. To be precise, he created m one-directional passages, each connecting two towers. Each passage
i has some number ti associated with it, meaning the time it takes, in seconds, for an orc to travel along
it. In other words, Saruman’s transport system can be represented with a directed weighted graph.

On December 15th, Saruman, sitting in the middle tower called Orthanc, gets a message from Sauron
(via palantir) which says that a valuable present is already near Isengard’s entrance tower. So, Saruman
needs to instruct the garrison to select one of the orcs and send them with a gift along the shortest path
from the entrance tower to Orthanc.

Unfortunately, orcs... aren’t exactly smart fellas. Although they are able to drag a load along passages
in the transport system and they (at least, in principle) know where Orthanc is, orcs have a really
poor understanding of the concept of the shortest path. To make everyone’s lives easier, on some towers
Saruman puts a huge flashing pointer which says “TO ORTHANC — THIS WAY” and points to
one of the passages leading from this tower. Saruman wants orcs to reach Orthanc as fast as possible —
hence, a flashing pointer can only point to a passage that lies on one of the shortest paths to Orthanc.
Formally, the flashing pointer on the tower u can point to a passage a⃗ = −→uv only if

−−→
dist(v,O) < +∞ and

−−→
dist(u,O) = ta⃗ +

−−→
dist(v,O). Here by

−−→
dist(x, y) we denote the minimum time it takes to get to tower y

from tower x (or +∞ if there is no oriented path from x to y), by O we denote the tower of Orthanc, and
by u and v we denote the starting and the finishing towers of the passage a⃗. Note that Saruman will not
put a flashing pointer onto Orthanc, nor will he put it on any tower from which Orthanc is unreachable.
On each of the remaining towers, he will put exactly one flashing pointer.

This still does not work perfectly well. While traveling to Orthanc, each time an orc is near some tower
(any but Orthanc), the orc can either choose a marked passage with Saruman’s sign or do some hanging
around, as Saruman calls it, when the orc chooses an outgoing passage completely at random. For any
orc, there exists an integer d such that when they’re given an order to go to Orthanc, during the commute
the orc never chooses to hang around more than d times. This exact number we will politely call this orc’s
incompetence.

Note that at some moment it may happen that an orc finds themselves near a tower from which there is
no oriented path to Orthanc. Under these unfortunate circumstances, even the least competent orc will
find no flashing pointer on the tower, figure out that their mission has failed, stop immediately, and wait
for a rescue operation.

Saruman knows that his servants are not very brilliant minds, so he does not expect the delivery of the
present to be quick, but he wants it to be successful at the very least. Therefore, it makes sense to assign
to this task as competent an orc as possible; on the other hand, competent orcs are rare and pulling
them out of their current activities may entirely disrupt those activities. Hence, given the description of
Isengard’s transport system, find the maximum number d such that there exists a way Saruman can put
the flashing pointers, so that an orc with a level of incompetence equal to d can be assigned to deliver the
present from the entrance tower and is guaranteed to carry out the order with success, reaching Orthanc.

Input
The first line contains two integers n and m — the number of towers and the number of one-directional
passages between them (2 ≤ n ≤ 4 · 105; 0 ≤ m ≤ 4 · 105). In the next m lines the descriptions of the
passages follow. Each line contains three integers ui, vi, ti — the numbers of the starting and the ending
towers of a passage, and the number of seconds it takes for a loaded orc to travel along this passage
(1 ≤ ui, vi ≤ n; 1 ≤ ti ≤ 106). There can be several passages between the same pair of towers, in any
direction, as well as passages that lead from a tower to itself — in other words, loops, multiple passages,
and symmetric pairs of passages are allowed.

Page 11 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

The entrance tower is numbered 1 and Orthanc is numbered n.

Output
Print one integer d — the maximum incompetence of an orc who is guaranteed to complete the delivery.
If with any level of incompetence it is possible, print the number n (the number of towers). On the other
hand, if with any level of incompetence it is impossible, print −1.

Examples
standard input standard output Illustration

5 7

1 3 5

4 5 2

3 4 3

1 5 9

4 2 8

5 2 11

3 5 5

2

5

9

8

11

3

5
2

1

23 4

5

6 6

1 2 5

2 3 9

1 4 11

2 1 1000000

5 3 15

5 6 1

-1 5

1000000

11 9

15

1

1 2

34 5

6

4 7

1 2 5

1 1 30

3 2 9

1 4 11

1 4 16

2 1 1000000

1 4 11

4 5

1000000

11

16

11

9

30

1 2 34

2 0 -1
1 2

6 7

1 2 5

2 3 9

1 6 11

2 1 1000000

1 5 9

5 6 2

5 4 4

1

5

1000000

911

9

4

2

1 2 3 4

56

4 4

1 4 6

1 3 2

3 2 3

3 4 4

1

2

6

3

4

1

2 3

4

3 2

1 2 1

1 3 1

0

1 1
12 3

Page 12 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem J. Judicious Watching
Time limit: 3 seconds
Memory limit: 1024 megabytes

Jill loves having good grades in university, so she never misses deadlines for her homework assignments. But
even more, she loves watching the series and discussing it with her best friend Johnny. And unfortunately,
today she needs to choose between these two activities!

Jill needs to complete n homework tasks. The i-th task would require ai minutes to complete and needs
to be submitted to the teacher at most di minutes from now. Also, there are m new episodes of the series
that Johnny and Jill want to discuss. The j-th episode lasts lj minutes. Jill can complete tasks in any
order, but she needs to watch the episodes in the order they come. Neither completing a homework task
nor watching an episode can be interrupted after starting.

Johnny and Jill need to agree on a time tk when they would have a call to discuss the series. They are
not sure yet which time to choose. For each possible time, compute the maximum number of episodes Jill
could watch before that time while still being able to complete all n homework tasks in time.

Note that for the purpose of this problem we assume that discussing the series with Johnny at time tk does
not consume significant time from Jill and can happen even if she is in the middle of completing
any of her homework tasks.

Input
There are several test cases in the input. The input begins with the number of test cases T (1 ≤ T ≤ 1 000).

Each test case starts with a line with three integers n (1 ≤ n ≤ 200 000) — the number of homework
tasks, m (1 ≤ m ≤ 200 000) — the number of episodes, and q (1 ≤ q ≤ 200 000) — the number of possible
times for the call with Jill.

The second line contains n integers ai (1 ≤ ai ≤ 109) — the number of minutes it takes to complete the
task. The next line contains n integers di (1 ≤ di ≤ 1015) — the deadline before which this task must be
completed. The next line contains m integers lj (1 ≤ lj ≤ 109) — the length of episodes in the order they
need to be watched. The next line contains q integers tk (1 ≤ tk ≤ 1015) — the possible times of call with
Jill.

It is possible to complete all tasks within their respective deadlines.

The sum of each of n, m, q over all test cases in input doesn’t exceed 200 000.

Output
For each test case output a single line with q integers — for each possible time tk the maximum number
of episodes Jill can watch.

Example
standard input standard output

2

1 2 3

10

15

5 5

5 15 20

3 4 5

8 100 8

10 150 20

2 32 1 1

9 200 51 50 10

1 1 2

1 4 2 2 1

Page 13 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem K. Knowns and Unknowns
Time limit: 3 seconds
Memory limit: 1024 megabytes

Two math professors have office hours on the same day. Students visit each professor to present their
assignment solutions, one by one. For the whole semester, both professors established some fixed order of
the students in which they should visit the professor. There are n students denoted with integers from 1
to n. Each professor’s order of students is a permutation of numbers from 1 to n.

Today only some of the students visited the university; let A be the set of numbers that denote the
students that were at the university today. All of the students from the set A have visited both professors,
and all of the students outside of the set A haven’t visited any professor.

Each of the professors made a list of the students they have talked with, in the same order the students
have visited. Note that the list has to correspond to the order the professor has established, with the only
difference that the students outside of the set A are missing in it. It is the beginning of the year, so the
professors didn’t have a chance to get to know every student. So for the students that a professor knows,
the list contains their identifier, but for those that the professor doesn’t know, the list contains −1.

Consider an example: the first professor’s order is [1, 2, 3, 4], and the second professor’s — [3, 2, 4, 1]. The
list made by the first professor today is [1,−1,−1], and the list made by the second professor is [3,−1, 1].
Based on the lists, we can immediately see that three students have visited the university today. We can
infer that the set A was either {1, 2, 3} or {1, 3, 4}.
You are given two permutations — the orders established by each professor; you are also given two lists
that professors made today. Your task is to help the professors. Based on the provided data, determine
for each student whether they definitely visited the university, definitely did not, or whether this cannot
be determined. Note that professors could have confused the students, so there is a possibility that the
given data is inconsistent.

Input
The first line contains a single integer T (T ≥ 1) — the number of test cases to solve.

Then the description of test cases follows.

The first line of the test case contains a single integer n — the number of students (1 ≤ n ≤ 2000).

The second line of the test case contains n distinct integers p1,1, p1,2, . . . , p1,n — the order established by
the first professor, meaning that student p1,1 comes first, and p1,n comes last (1 ≤ p1,i ≤ n).

The third line of the test case contains n distinct integers p2,1, p2,2, . . . , p2,n — the order established by
the second professor in the same format (1 ≤ p2,i ≤ n).

The fourth line of the test case contains an integer k — the number of students that visited the university
today (1 ≤ k ≤ n).

The fifth line of the test case contains k integers s1,1, s1,2, . . . , s1,k — the first professor’s list. Each student
appears in the list at most once (s1,i = −1 or 1 ≤ s1,i ≤ n).

The sixth line of the test case contains k integers s2,1, s2,2, . . . , s2,k — the second professor’s list in the
same format (s2,i = −1 or 1 ≤ s2,i ≤ n).

The total sum of n in all T test cases doesn’t exceed 2000.

Output
For each test case, output a single string. If the given data is inconsistent, print a single word
“Inconsistent”. Otherwise, print a string consisting of n characters, the i-th of which is ‘Y’ if the i-th
student visited the university today, ‘N’ if the i-th student didn’t visit the university today, or ‘?’ if it
cannot be determined.

Page 14 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Examples
standard input standard output

2

4

1 2 3 4

3 2 4 1

3

1 -1 -1

3 -1 1

4

1 2 3 4

3 2 4 1

3

1 -1 2

3 -1 1

Y?Y?

Inconsistent

2

3

1 2 3

2 1 3

2

-1 2

-1 -1

3

1 2 3

3 2 1

2

1 3

2 -1

YYN

Inconsistent

Page 15 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem L. Legacy Screensaver
Time limit: 3 seconds
Memory limit: 1024 megabytes

On a very old operating system, a screensaver consists of two rectangles flying around the screen. The
screen is W pixels wide and H pixels high. Consider the origin to be in the top-left corner of the screen,
the x-axis to go from the origin to the right, and the y-axis to go from the origin to the bottom.

Rectangle i (i = 1, 2) has a width of wi pixels, a height of hi pixels, initially its top-left corner has
coordinates (xi, yi), and its initial movement direction is (δxi, δyi), where each of δxi and δyi is either −1
or 1. At the end of each second, rectangle i’s top-left corner coordinates instantly change by (δxi, δyi).

Whenever rectangle i touches the left or the right border of the screen, the value of δxi changes sign before
the next second. Similarly, whenever rectangle i touches the top or the bottom border of the screen, the
value of δyi changes sign before the next second. Whenever rectangle i touches two borders of the screen
at the same time (which can only happen at the corner of the screen), both δxi and δyi change sign.

As a result of the above, both rectangles stay fully within the screen at all times. Informally, collisions
of the rectangles with the screen borders are perfectly elastic. Note, however, that rectangle movement is
still discrete: each rectangle moves instantly by 1 pixel in both directions at the end of each second.

You are curious how often these two rectangles overlap. The rectangles are considered to be overlapping
if their intersection has a positive area.

Let f(t) be the number of integers τ = 0, 1, . . . , t − 1 such that the rectangles overlap during second τ
(where second 0 is before the rectangles start moving).

Find the limit of f(t)
t as t → ∞ as an irreducible fraction. It can be shown that this limit is a rational

number.

Input
Each test contains multiple test cases. The first line contains the number of test cases T (1 ≤ T ≤ 1000).
The description of the test cases follows.

The first line of each test case contains two integers W and H, denoting the width and the height of the
screen (3 ≤ W,H ≤ 4000).

The next two lines describe the two rectangles. Each rectangle is described by six integers wi, hi, xi, yi,
δxi, δyi, describing the i-th rectangle and denoting its width, its height, the coordinates of its top-left
corner, and its initial movement direction (1 ≤ wi ≤ W − 2; 1 ≤ hi ≤ H − 2; 0 < xi < W − wi;
0 < yi < H − hi; δxi, δyi ∈ {−1, 1}).
The sum of the values of W +H across all test cases is guaranteed to not exceed 8000.

Output
For each test case, print a non-negative integer p and a positive integer q, separated by a slash (‘/’)
without spaces, meaning that the limit of f(t)

t as t → ∞ is equal to p
q . The fraction must be irreducible —

that is, the greatest common divisor of p and q must be equal to 1.

Example
standard input standard output

2

3 3

1 1 1 1 1 1

1 1 1 1 1 -1

5 4

2 2 1 1 -1 -1

2 1 2 2 1 -1

1/2

1/3

Page 16 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Note
For the second test case, the state of rectangles during the first few seconds is shown in the following
pictures. The rectangles overlap during seconds τ = 0 and τ = 6. Thus, for example, f(8) = 2.

τ = 0

x

y

0 1 2 3 4 5

1

2

3

4

τ = 1

x

y

0 1 2 3 4 5

1

2

3

4

τ = 2

x

y

0 1 2 3 4 5

1

2

3

4

τ = 3

x

y

0 1 2 3 4 5

1

2

3

4

τ = 4

x

y

0 1 2 3 4 5

1

2

3

4

τ = 5

x

y

0 1 2 3 4 5

1

2

3

4

τ = 6

x

y

0 1 2 3 4 5

1

2

3

4

τ = 7

x

y

0 1 2 3 4 5

1

2

3

4

Page 17 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Problem M. Managing Cluster
Time limit: 3 seconds
Memory limit: 1024 megabytes

You want to write a cluster manager extension that will improve your product performance. Your product
has n services (numbered from 1 to n) and is hosted on a cluster with 2n machines (numbered from 1 to
2n). Each service is running in exactly two replicas. Each replica is run on some machine. Each machine
runs exactly one replica of some service.

One of the key factors of this cluster’s performance is the network. Some pairs of machines are connected
directly and can transfer data between them very efficiently. There are exactly 2n− 1 direct connections,
and it is possible to transfer data between any two machines using direct connections. In other words,
direct connections form a tree.

During the deployment, all 2n replicas were assigned to machines. Your extension gets the direct
connections list and the sequence a1, a2, . . . , a2n, where ai is the number of the service that will be running
on machine i. Your extension can swap some replicas between machines. The swap operation takes two
machines i, j and swaps values ai and aj . Each machine is allowed to participate in at most one swap
operation. Your extension should make some swap operations that maximize the cluster performance.

Due to the fact that most data will be transferred between two replicas of the same service, the cluster
performance is measured as the number of services that have two replicas running on machines connected
directly. Help to write the extension that will maximize the cluster performance.

Input
The first line contains a single integer T (1 ≤ T ≤ 105) — the number of test cases. Descriptions of test
cases follow.

The first line of each test case contains a single integer n (1 ≤ n ≤ 105).

The second line contains 2n integers a1, a2, . . . , a2n (1 ≤ ai ≤ n). It is guaranteed that each value from 1
to n appears exactly twice in this sequence.

Each of the next 2n−1 lines contains two integers u and v (1 ≤ u, v ≤ 2n, u ̸= v), meaning that machines
u and v are connected directly. Direct connections are guaranteed to form a tree.

It is guaranteed that the sum of n for all test cases does not exceed 105.

Output
For each test case on the first line print a single integer k (0 ≤ k ≤ n) — the number of swap operations
the extension wants to make.

Each of the next k lines should contain two integers i, j (1 ≤ i, j ≤ 2n, i ̸= j) — swap operations. Each
number from 1 to 2n should appear at most once.

Note that the order of operations is not important. After applying swap operations, the cluster performance
should be the maximum possible. You can print any answer that satisfies the requirements.

Page 18 of 19

ICPC 2024–2025, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Tbilisi, December 15th, 2024

Example
standard input standard output

3

2

1 2 2 1

1 2

2 3

3 4

4

4 3 1 3 2 4 1 2

1 2

3 1

3 4

5 1

5 6

2 7

2 8

3

1 1 2 2 3 3

1 2

1 3

1 4

1 5

1 6

1

1 3

3

1 5

8 3

4 7

0

Note
In the first test case only replicas of service 2 run on directly
connected machines, so the performance is 1. The performance can
be increased to 2 by swapping replicas between machines 1 and 3. 1

1

2

2

3

2

4

1

In the second test case no two replicas run on directly connected
machines, so the performance is zero. The performance can be
increased to 3 by performing swaps 1 − 5, 8 − 3, and 4 − 7 so that
replicas of services 2, 3, and 4 run on directly connected machines.
It can be shown that it is impossible to get performance 4 here.

1

4

2

3

3

1

4

3

5

2

6

4

7

1

8

2

In the third test case only replicas of service 1 run on directly
connected machines, so the performance is 1. It is obvious that here
the performance cannot be made any bigger.

1

1

2

1

3

2

4

2

5

3

6

3

Page 19 of 19

